Posts Tagged ‘brain’

Copper Connected to Alzheimer’s Disease

Tuesday, September 3rd, 2013

Proceedings of the National Academy of Sciences of the United States of America has conducted a study linking the consumption of copper to Alzheimer’s:

Significance
The causes of the sporadic form of Alzheimer’s disease (AD) are unknown. In this study we show that copper (Cu) critically regulates low-density lipoprotein receptor-related protein 1–mediated Aβ clearance across the blood–brain barrier (BBB) in normal mice. Faulty Aβ clearance across the BBB due to increased Cu levels in the aging brain vessels may lead to accumulation of neurotoxic Aβ in brains. In a mouse model of AD low levels of Cu also influences Aβ production and neuroinflammation. Our study suggests that Cu may also increase the severity of AD.

Abstract
Whereas amyloid-β (Aβ) accumulates in the brain of normal animals dosed with low levels of copper (Cu), the mechanism is not completely known. Cu could contribute to Aβ accumulation by altering its clearance and/or its production. Because Cu homeostasis is altered in transgenic mice overexpressing Aβ precursor protein (APP), the objective of this study was to elucidate the mechanism of Cu-induced Aβ accumulation in brains of normal mice and then to explore Cu’s effects in a mouse model of Alzheimer’s disease. In aging mice, accumulation of Cu in brain capillaries was associated with its reduction in low-density lipoprotein receptor-related protein 1 (LRP1), an Aβ transporter, and higher brain Aβ levels. These effects were reproduced by chronic dosing with low levels of Cu via drinking water without changes in Aβ synthesis or degradation. In human brain endothelial cells, Cu, at its normal labile levels, caused LRP1-specific down-regulation by inducing its nitrotyrosination and subsequent proteosomal-dependent degradation due in part to Cu/cellular prion protein/LRP1 interaction. In APPsw/0 mice, Cu not only down-regulated LRP1 in brain capillaries but also increased Aβ production and neuroinflammation because Cu accumulated in brain capillaries and, unlike in control mice, in the parenchyma. Thus, we have demonstrated that Cu’s effect on brain Aβ homeostasis depends on whether it is accumulated in the capillaries or in the parenchyma. These findings should provide unique insights into preventative and/or therapeutic approaches to control neurotoxic Aβ levels in the aging brain.

In a separate study, playing a musical instrument was found to and years to the life of the brain.

Brainstorm

Tuesday, April 2nd, 2013

President Obama unveiled the “BRAIN” Initiative—a bold new research effort to revolutionize our understanding of the human mind and uncover new ways to treat, prevent, and cure brain disorders like Alzheimer’s, schizophrenia, autism, epilepsy, and traumatic brain injury.

The BRAIN Initiative — short for Brain Research through Advancing Innovative Neurotechnologies — builds on the President’s State of the Union call for historic investments in research and development to fuel the innovation, job creation, and economic growth that together create a thriving middle class.

The Initiative promises to accelerate the invention of new technologies that will help researchers produce real-time pictures of complex neural circuits and visualize the rapid-fire interactions of cells that occur at the speed of thought. Such cutting-edge capabilities, applied to both simple and complex systems, will open new doors to understanding how brain function is linked to human behavior and learning, and the mechanisms of brain disease.

In his remarks this morning, the President highlighted the BRAIN Initiative as one of the Administration’s “Grand Challenges” – ambitious but achievable goals that require advances in science and technology to accomplish. The President called on companies, research universities, foundations, and philanthropies to join with him in identifying and pursuing additional Grand Challenges of the 21st century—challenges that can create the jobs and industries of the future while improving lives.

In addition to fueling invaluable advances that improve lives, the pursuit of Grand Challenges can create the jobs and industries of the future.

That’s what happened when the Nation took on the Grand Challenge of the Human Genome Project. As a result of that daunting but focused endeavor, the cost of sequencing a single human genome has declined from $100 million to $7,000, opening the door to personalized medicine.

Like sequencing the human genome, President Obama’s BRAIN Initiative provides an opportunity to rally innovative capacities in every corner of the Nation and leverage the diverse skills, tools, and resources from a variety of sectors to have a lasting positive impact on lives, the economy, and our national security.

That’s why we’re so excited that critical partners from within and outside government are already stepping up to the President’s BRAIN Initiative Grand Challenge.

The BRAIN Initiative is launching with approximately $100 million in funding for research supported by the National Institutes of Health (NIH), the Defense Advanced Research Projects Agency (DARPA), and the National Science Foundation (NSF) in the President’s Fiscal Year 2014 budget.

Foundations and private research institutions are also investing in the neuroscience that will advance the BRAIN Initiative. The Allen Institute for Brain Science, for example, will spend at least $60 million annually to support projects related to this initiative. The Kavli Foundation plans to support BRAIN Initiative-related activities with approximately $4 million dollars per year over the next ten years. The Howard Hughes Medical Institute and the Salk Institute for Biological Studies will also dedicate research funding for projects that support the BRAIN Initiative.

This is just the beginning. We hope many more foundations, Federal agencies, philanthropists, non-profits, companies, and others will step up to the President’s call to action.